Formulaire de Terminale S (obligatoire)

A. RIDARD

1. Nombres complexes

a. Conjugués, modules et arguments

Propriétés des conjugués

Pour tous complexes z_1 et z_2 ,

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}
\underline{z_1 z_2} = \overline{z_1 z_2}
\overline{\left(\frac{z_1}{z_2}\right)} = \overline{\frac{z_1}{z_2}}, z_2 \neq 0$$

Propriétés des modules

Pour tous complexes z_1 et z_2 ,

$$|z_1 z_2| = |z_1||z_2|$$

 $|\frac{z_1}{z_2}| = \frac{|z_1|}{|z_2|}, z_2 \neq 0$

Propriétés des arguments

Pour tous complexes non nuls z_1 et z_2 ,

$$\begin{array}{rcl} arg(z_1z_2) & = & arg(z_1) + arg(z_2) \left[2\pi \right] \\ arg\left(\frac{z_1}{z_2} \right) & = & arg(z_1) - arg(z_2) \left[2\pi \right] \end{array}$$

b. Formule de Moivre

Pour tout réel θ et tout entier n,

$$(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$$

c. Formules d'Euler

Pour tout réel θ ,

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 et $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

d. Expressions complexes des transformations

La translation de vecteur $\vec{u}(t)$ est définie par

$$z' = z + t$$

L'homothétie de centre $\Omega(\omega)$ et de rapport $k \in \mathbf{R}$ est définie par

$$z' - \omega = k(z - \omega)$$

La rotation de centre $\Omega(\omega)$ et d'angle $\theta \in \mathbf{R}$ est définie par

$$z' - \omega = e^{i\theta}(z - \omega)$$

2. Algèbre et trigonométrie

a. Equations du second degré dans C

On considère l'équation $az^2 + bz + c = 0$ où a, b et c sont des réels avec $a \neq 0$ et $\Delta = b^2 - 4ac$:

1

– Si $\Delta > 0$, l'équation admet deux solutions réelles

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

De plus,

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2})$$

– Si $\Delta = 0$, l'équation admet une solution réelle

$$x_1 = \frac{-b}{2a}$$

De plus,

$$ax^2 + bx + c = a(x - x_1)^2$$

– Si $\Delta < 0$, l'équation admet deux solutions complexes conjuguées

$$z_1 = \frac{-b + i\sqrt{-\Delta}}{2a}$$
 et $z_2 = \overline{z_1} = \frac{-b - i\sqrt{-\Delta}}{2a}$

De plus,

$$az^{2} + bz + c = a(z - z_{1})(z - z_{2})$$

b. Formules trigonométriques

Formules d'addition

Pour tous réels a et b,

$$cos(a + b) = cos a cos b - sin a sin b$$

$$cos(a - b) = cos a cos b + sin a sin b$$

$$sin(a + b) = sin a cos b + cos a sin b$$

$$sin(a - b) = sin a cos b - cos a sin b$$

Formules de duplication

Pour tout réel a,

$$cos(2a) = cos2 a - sin2 a$$

$$= 2 cos2 a - 1$$

$$= 1 - 2 sin2 a$$

$$sin(2a) = 2 sin a cos a$$

3. Analyse

a. Dérivées

On considère une fonction f définie sur un intervalle I.

Définition. On dit que f est dérivable en $a \in I$ si $\frac{f(x)-f(a)}{x-a}$ admet une limite finie quand x tend vers a. Dans ce cas, $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ est le nombre dérivé de f en a noté f'(a).

Propriété. Si f est dérivable en $a \in I$, l'équation de la tangente à C_f au point d'abscisse a est

$$y = f'(a)(x - a) + f(a)$$

Dérivées des fonctions usuelles

f(x)	f'(x)	
λ	0	
x	1	
$x^n, n \in \mathbf{N}^*$	nx^{n-1}	
$\frac{1}{x}$	$-\frac{1}{x^2}$	
$\frac{1}{x^n}, n \in \mathbf{N}^*$	$-\frac{n}{x^{n+1}}$	
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	
$\ln x$	$\frac{1}{x}$	
e^x	e^x	
a^x	$a^x \ln a$	
$\cos x$	$-\sin x$	
$\sin x$	$\cos x$	
$\tan x$	$\frac{1}{\cos^2 x} = 1 + \tan^2 x$	

Opérations sur les dérivées

f	f'
u + v	u' + v'
λu	$\lambda u'$
uv	u'v + uv'
$\frac{1}{u}$	$-\frac{u'}{u^2}$
$\frac{u}{v}$	$\frac{u'v-uv'}{v^2}$
vou	(v'ou)u'
$u^n, n \in \mathbf{N}^*$	$nu^{n-1}u'$
$\ln u$	$\frac{u'}{u}$
e^u	$e^u u'$

b. Limites

Limite de u+v

v u	l'	$+\infty$	$-\infty$
l	l+l'	$+\infty$	$-\infty$
$+\infty$	$+\infty$	$+\infty$	FI
$-\infty$	$-\infty$	FI	$-\infty$

Limite de uv

v u	$l' \neq 0$	0	∞
$l \neq 0$	ll'	0	∞
0	0	0	FI
∞	∞	FI	∞

Limite de $\frac{u}{v}$

v	$l' \neq 0$	0	∞
$l \neq 0$	$\frac{l}{l'}$	∞	0
0	0	FI	0
∞	∞	∞	FI

c. Théorèmes de comparaison

Theorème (des gendarmes). Soit u, v et w des fonctions définies sur un intervalle I contenant $a \in \mathbf{R}$. Si $u(x) \le v(x) \le w(x)$ au voisinage de a et si $\lim_{x \to a} u(x) = \lim_{x \to a} w(x) = l$, alors $\lim_{x \to a} v(x) = l$.

Theorème. Soit u et v des fonctions définies sur un intervalle I contenant $a \in \mathbf{R}$. Si $u(x) \le v(x)$ au voisinage de a et si $\lim_{x \to a} u(x) = +\infty$, alors $\lim_{x \to a} v(x) = +\infty$.

d. Suites arithmétiques et géométriques

Si u est une suite arithmétique de premier terme u_0 et de raison r, alors pour tout $n \in \mathbb{N}$,

$$u_{n+1} = u_n + r$$

$$u_n = u_0 + nr$$

$$u_0 + u_1 + \dots + u_n = (n+1)\frac{u_0 + u_n}{2}$$

Si u est une suite géométrique de premier terme u_0 et de raison q, alors pour tout $n \in \mathbb{N}$,

$$u_{n+1} = u_n q$$

$$u_n = u_0 q^n$$

$$u_0 + u_1 + \ldots + u_n = u_0 \frac{1 - q^{n+1}}{1 - q} (q \neq 1)$$

e. Théorèmes sur les suites

Theorème (des gendarmes). Soit u, v et w des suites définies sur \mathbf{N} . Si $u_n \leq v_n \leq w_n$ à partir d'un certain rang et si $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = l$, alors $\lim_{n \to +\infty} v_n = l$.

Theorème. Soit u et v des suites définies sur \mathbf{N} . Si $u_n \leq v_n$ à partir d'un certain rang et si $\lim_{n \to +\infty} u_n = +\infty$, alors $\lim_{n \to +\infty} v_n = +\infty$.

Theorème (de la limite monotone).

- Une suite croissante et majorée converge
- Une suite décroissante et minorée converge

Theorème (des suites adjacentes). Deux suites adjacentes sont convergentes et ont la même limite.

f. Propriétés algébriques des fonctions logarithmes et exponentielles

Pour tous réels strictement positifs a et b,

$$\ln(ab) = \ln a + \ln b
\ln(\frac{a}{b}) = \ln a - \ln b
\ln(a^n) = n \ln a, n \in \mathbf{Q}$$

Pour tous réels a et b,

$$e^{a+b} = e^a e^b$$

$$e^{a-b} = \frac{e^a}{e^b}$$

$$(e^a)^b = e^{ab}$$

g. Equations différentielles

Pour tous réels a et b avec $a \neq 0$, les solutions de l'équation différentielle y' = ay + b sont les fonctions définies sur \mathbf{R} par

$$f(x) = Ce^{ax} - \frac{b}{a}, C \in \mathbf{R}$$

4. Probabiltés

a. Espérance, variance et écart-type

$$\mathbf{E}(X) = \sum_{i=1}^{n} p_i x_i$$

$$\mathbf{V}(X) = \sum_{i=1}^{n} p_i x_i^2 - \mathbf{E}(x)^2$$

$$\sigma(X) = \sqrt{\mathbf{V}(X)}$$

b. Lois classiques

loi	définition	espérance	variance
$\mathcal{B}(p)$	P(X = 1) = p et P(X = 0) = 1 - p	p	p(1-p)
$\mathcal{B}(n,p)$	$\mathbf{P}(X = k) = C_n^k p^k (1 - p)^{n - k}, \ k \in \{0, \dots, n\}$	np	np(1-p)
$\mathcal{E}(\lambda)$	$\mathbf{P}(X \le c) = \int_0^c \lambda e^{-\lambda t} dt, c \ge 0$		

5. Géométrie

a. Barycentre

Définition. On dit que G est barycentre de $\{(A_1, \alpha_1), \dots, (A_n, \alpha_n)\}$ avec $\alpha_1 + \dots + \alpha_n \neq 0$ si

$$\alpha_1 \overrightarrow{GA_1} + \ldots + \alpha_n \overrightarrow{GA_n} = \vec{0}$$

Theorème (du barycentre partiel). Soit G le barycentre de $\{(A_1, \alpha_1), (A_2, \alpha_2), (A_3, \alpha_3)\}$. Si $\alpha_1 + \alpha_2 \neq 0$, alors G est le barycentre de $\{(G', \alpha_1 + \alpha_2), (A_3, \alpha_3)\}$ où G' est le barycentre de $\{(A_1, \alpha_1), (A_2, \alpha_2)\}$.

b. Produit scalaire

Theorème. Si \vec{u} et \vec{v} ont pour coordonnées dans un repère **orthonormal** $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$, alors

$$\vec{u} \bullet \vec{v} = xx' + yy' + zz'$$

c. Distance

Distance entre deux points

$$d(A,B) = ||\overrightarrow{AB}|| = \sqrt{\overrightarrow{AB} \bullet \overrightarrow{AB}}$$

Distance entre un point et un plan

Si B est un point de (P) et \vec{n} un vecteur directeur de P, alors

$$d(A,(P)) = \frac{|\overrightarrow{AB} \bullet \overrightarrow{n}|}{||\overrightarrow{n}||}$$

Distance entre deux droites

Si A est un point de D_1 , B un point de D_2 et \vec{n} un vecteur normal à D_1 et D_2 , alors

$$d((D_1),(D_2)) = \frac{|\overrightarrow{AB} \bullet \overrightarrow{n}|}{||\overrightarrow{n}||}$$

5