Introduction aux courbes elliptiques Cours 2 - Polynômes de degré 3 et courbes elliptiques

2019/2020 - A. RIDARD

A propos de ce document

- Pour naviguer dans le document, vous pouvez utiliser :
 - le menu (en haut à gauche)
 - les différents liens
- Pour signaler une erreur, vous pouvez envoyer un message à l'adresse suivante : anthony.ridard@univ-ubs.fr

Plan du cours

- Polynômes de degré 3
 - Rappels sur les polynômes de degré 2
 - CNS de racine multiple
 - Discriminant de $X^3 + aX + b$

- Courbes elliptiques
 - Définition et caractérisation
 - Loi de groupe

Rappels sur les polynômes de degré 2 CNS de racine multiple Discriminant de X³ + aX + b

- Polynômes de degré 3
- Courbes elliptiques

- Polynômes de degré 3
 - Rappels sur les polynômes de degré 2
 - CNS de racine multiple
 - Discriminant de $X^3 + aX + b$
- Courbes elliptiques
 - Définition et caractérisation
 - Loi de groupe

On considère dans cette partie $P = aX^2 + bX + c$ un polynôme (à coefficients réels) du second degré $(a \neq 0)$.

Propriété (Racines et discriminant) :

On note $\Delta = b^2 - 4ac$ le discriminant de P.

• Si $\Delta > 0$, alors P admet deux racines réelles (simples) :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

De plus, $P = a(X - x_1)(X - x_2)$

• Si $\Delta = 0$, alors P admet une racine réelle (double) :

$$x_1 = \frac{-b}{2a}$$

De plus, $P = a(X - x_1)^2$

- Si $\Delta < 0$, alors P n'admet pas de racine réelle a.
- a. En revanche, P admet deux racines complexes (conjuguées) :

$$z_1 = \frac{-b - i\sqrt{-\Delta}}{2a}$$
 et $z_2 = \frac{-b + i\sqrt{-\Delta}}{2a}$

De plus, $P = a(X - z_1)(X - z_2)$

- On ne fera pas la différence entre le polynôme $P = aX^2 + bX + c$ et la fonction polynomiale $P: \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto ax^2 + bx + c$
- P a toujours deux racines complexes z_1 et z_2 (éventuellement confondues) vérifiant :

$$\Delta = a^2(z_1 - z_2)^2$$

 Un polynôme a toujours autant de racines complexes que son degré (théorème de D'Alembert), il est alors scindé :

$$a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0 = a_n (X - z_1) (X - z_2) \dots (X - z_n)$$

- Polynômes de degré 3
 - Rappels sur les polynômes de degré 2
 - CNS de racine multiple
 - Discriminant de $X^3 + aX + b$
- Courbes elliptiques
 - Définition et caractérisation
 - Loi de groupe

On considère dans cette partie $P = a_3 X^3 + a_2 X^2 + a_1 X + a_0$ un polynôme (à coefficients réels) de degré 3 $(a_3 \neq 0)$.

On note z_1, z_2, z_3 ses trois racines complexes (éventuellement confondues) :

$$P = a_3(X - z_1)(X - z_2)(X - z_3)$$

Définition (Racine multiple)

On dit que z_1 est racine multiple de P si $(X-z_1)^2$ divise P:

$$P = (X - z_1)^2 Q$$
 avec Q un polynôme de degré 1

- On rappelle que z_1 est racine de P c'est à dire $P(z_1)=0$ si $(X-z_1)$ divise P (division euclidienne)
- On remarque que $(X-z_1)^2$ divise P si et seulement si $z_1=z_2$ ou $z_1=z_3$

Propriété (CNS à l'aide de la dérivée) :

 z_1 est racine multiple de P si et seulement si $P(z_1) = P'(z_1) = 0$

Définition (Discriminant)

On appelle discriminant de P, noté Δ , le nombre défini par :

$$\Delta = a_3^4 (z_1 - z_2)^2 (z_1 - z_3)^2 (z_2 - z_3)^2$$

En notant $z_1, z_2, ..., z_n$ les n racines complexes de $a_n X^n + a_{n-1} X^{n-1} + \cdots + a_1 X + a_0$, on peut définir :

$$\Delta = a_n^{2n-2} \prod_{i < j} (z_i - z_j)^2$$

Propriété (CNS à l'aide du discriminant) :

P admet une racine multiple si et seulement si $\Delta = 0$

- Polynômes de degré 3
 - Rappels sur les polynômes de degré 2
 - CNS de racine multiple
 - Discriminant de $X^3 + aX + b$

- Courbes elliptiques
 - Définition et caractérisation
 - Loi de groupe

On considère dans cette partie $P = X^3 + aX + b$ et on note z_1, z_2, z_3 ses trois racines complexes.

Propriété (Relations entre coefficients et racines) :

On note $\sigma_1 = z_1 + z_2 + z_3$, $\sigma_2 = z_1 z_2 + z_1 z_3 + z_2 z_3$ et $\sigma_3 = z_1 z_2 z_3$. On peut alors exprimer les σ_i à l'aide des coefficients de P:

$$\sigma_1 = 0$$
, $\sigma_2 = a$ et $\sigma_3 = -b$

• En fait, pour $a_3X^3 + a_2X^2 + a_1X + a_0$ avec z_1, z_2, z_3 ses trois racines complexes, on a :

$$\sigma_1 = -\frac{a_2}{a_3}$$
, $\sigma_2 = \frac{a_1}{a_3}$ et $\sigma_3 = -\frac{a_0}{a_3}$

• Rappelez-vous les relations entre coefficients et racines pour $aX^2 + bX + c$ avec z_1, z_2 ses racines complexes :

$$z_1 + z_2 = \frac{-b}{a}$$
 et $z_1 z_2 = \frac{c}{a}$

Propriété (Discriminant de $X^3 + aX + b$):

Le discriminant de P s'exprime à l'aide de ses coefficients :

$$\Delta = -\left(4a^3 + 27b^2\right)$$

Preuve: Cf. feuille de TD 2

- Polynômes de degré 3
- Courbes elliptiques

- Polynômes de degré 3
 - Rappels sur les polynômes de degré 2
 - CNS de racine multiple
 - Discriminant de $X^3 + aX + b$

- Courbes elliptiques
 - Définition et caractérisation
 - Loi de groupe

Définition (Point singulier)

On considère une courbe $\mathscr{C}: f(x,y) = 0$.

On dit que (x, y) est un point singulier de $\mathscr C$ si c'est un point critique de f et un point de \mathscr{C}

Un point critique de f n'est pas forcément un point singulier de $\mathscr{C}: f(x,y) = 0$. Considérer par exemple $\mathscr{C}: y^2 = x^3 + x^2$

Définition (Courbe elliptique)

On dit que la courbe $\mathscr{C}: f(x,y) = 0$ est elliptique si $f(x,y) = y^2 - x^3 - ax - b$ et si elle n'admet aucun point singulier.

Les courbes suivantes sont-elles elliptiques?

• $\mathscr{C}_1: y^2 = x^3 - x$ • $\mathscr{C}_2: y^2 = x^3 - x + 1$ • $\mathscr{C}_3: y^2 = x^3 + b$ avec $b \in \mathbb{R}$

4
$$\mathscr{C}_1: y^2 = x^3 - x$$

2
$$\mathscr{C}_2: y^2 = x^3 - x + 1$$

Propriété (CNS à l'aide des coefficients) :

Une courbe d'équation (courte de Weirstrass) $y^2 = x^3 + ax + b$ est elliptique si et seulement si $4a^3 + 27b^2 \neq 0$

Démontrer cette propriété.

- Polynômes de degré 3
 - Rappels sur les polynômes de degré 2
 - CNS de racine multiple
 - Discriminant de $X^3 + aX + b$

- Courbes elliptiques
 - Définition et caractérisation
 - Loi de groupe

Définition (Groupe)

Un groupe est un ensemble G muni d'une loi interne a * vérifiant :

- $\forall x, y, z \in G$, (x * y) * z = x * (y * z) (associativité)
- $\exists e \in G$, $\forall x \in G$, x * e = e * x = x (élément neutre)
- $\forall x \in G$, $\exists y \in G$, x * y = y * x = e (symétrique)
- a. Une application $G \times G \rightarrow G$

- L'élément neutre est unique, tout comme le symétrique d'un élément
- Si la loi * est commutative a, le groupe G est dit commutatif (abélien).
 Dans ce cas,
 - la loi * est (souvent) notée + et appelée addition
 - l'élément neutre est noté 0
 - le symétrique de x est noté -x et appelé opposé
- $a. \ \forall x,y \in G, \ x * y = y * x$