CHAPITRE MPSI: ARITHMÉTIQUE

HEI 1 - 2011/2012

I. Divisibilité et division euclidienne dans \mathbb{Z}

1. Divisibilité

Définition.

Etant donnés a et b deux entiers relatifs, on dit que a est un diviseur de b ou que b est un multiple de a s'il existe $k \in \mathbb{Z}$ tel que b = ka.

Notation.

- Si a divise b, on note a|b
- L'ensemble des diviseurs de b est noté $\mathcal{D}(b)$
- L'ensemble des multiples de a est noté $a\mathbb{Z}$

Exemple.

- 1 et -1 divisent tous les entiers mais ne sont divisibles que par 1 et -1
- 0 est multiple de tous les entiers mais n'est diviseur que de lui-même

Remarque. La relation de divisibilité dans \mathbb{Z} est réflexive et transitive mais n'est pas une relation d'ordre car elle n'est pas antisymétrique, contrairement à la divisibilité dans \mathbb{N} . D'ailleurs, pour cet ordre (partiel), le plus petit élément est 1 et le plus grand est 0. Enfin, la divisibilité dans \mathbb{N}^* est liée à l'ordre (total) naturel de \mathbb{N}^* :

$$a|b\Rightarrow a\leq b$$

2. Division euclidienne

Propriété.

Etant donné $(a,b) \in \mathbb{Z} \times \mathbb{Z}^*$, il existe un unique couple $(q,r) \in \mathbb{Z} \times \mathbb{Z}$ tel que :

$$a = bq + r, \ 0 \le r < |b|$$

Définition.

Déterminer les entiers q et r, c'est effectuer la division euclidienne de a par b. a est le dividende, b le diviseur, q le quotient et r le reste dans la division euclidienne de a par b.

Exemple.

- Division de -56 par 17
- Division de 32 par -7

II. PGCD - PPCM

1. PGCD

a. Définition et caractérisation

Définition.

Le PGCD de a et b, noté $a \wedge b$, est le plus grand commun diviseur de a et b si $(a,b) \in \mathbb{Z}^2 \setminus \{(0,0)\}$, et 0 si (a,b) = (0,0).

$ig(\mathbf{Propriété.} ig)$

Soit $(a, b) \in \mathbb{Z}^2$. Alors,

$$d = a \wedge b \Leftrightarrow \begin{cases} d \ge 0 \\ d|a \text{ et } d|b \\ \forall d' \in \mathbb{Z}, (d'|a \text{ et } d'|b) \Rightarrow d'|d \end{cases}.$$

Remarque.

 $- \forall (a,b) \in \mathbb{Z}^2, \ a \wedge b = |a| \wedge |b|$

 $- \ \forall a \in \mathbb{Z}, \ a \land 0 = |a|$

Définition.

Deux entiers a et b non nuls sont dits premiers entre eux lorsque $a \wedge b = 1$.

b. Théorème de Bézout et théorème de Gauss

Théorème (de Bézout).

Etant donnés a et b des entiers non nuls,

$$a \wedge b = 1 \Leftrightarrow \exists (u, v) \in \mathbb{Z}^2, ua + vb = 1$$

Théorème (de Gauss).

Etant donnés a, b et c des entiers non nuls,

$$(a \wedge b = 1 \text{ et } a \text{ divise } bc) \Rightarrow a \text{ divise } c$$

c. Théorème d'Euclide et Algorithme d'Euclide

Théorème (d'Euclide).

Etant donnés a, b, q et r des entiers non nuls,

$$a = bq + r \Rightarrow a \wedge b = b \wedge r$$

L'algorithme d'Euclide qui a pour objet le calcul du pgcd de deux entiers naturels est basé sur le théorème précédent, dans le cas particulier où a = bq + r exprime la division euclidienne de a par b, c'est à dire lorsque $0 \le r < b$:

- On divise a par b, en notant q_1 et r_1 respectivement les quotient et reste.
- Si $r_1 = 0$, alors $a \wedge b = b$.

Sinon, on utilise le théorème d'Euclide : $a \wedge b = b \wedge r_1$ pour être ramené au cas précédent.

- En itérant cette opération, on obtient un reste nul au bout d'un nombre fini s d'étapes (la suites des restes successifs étant strictement décroissante et minorée par 0).
- On a alors:

$$a \wedge b = b \wedge r_1 = r_1 \wedge r_2 = \dots = r_{s-1} \wedge r_s = r_{s-1}$$

En résumé, le PGCD de a et b est le dernier reste non nul dans la suite des divisions euclidiennes successives.

Exemple. Le PGCD de a = 18480 et b = 9828 est 84.

En "remontant" la suite des divisions euclidiennes successives, on obtient : 84 = 25a - 47b

d. Equations diophantiennes

Etant donnés A, B et C des entiers non nuls, on donne une méthode de résolution de :

$$Ax + By = C, (x, y) \in \mathbb{Z}^2$$

Propriété.

L'équation Ax + By = C a des solutions entières si et seulement si $A \wedge B$ divise C.

Exemple. Résoudre l'équation 29x - 25y = -3, $(x, y) \in \mathbb{Z}^2$

2. PPCM

Définition.

Le PPCM de a et b, noté $a \lor b$, est le plus petit commun multiple strictement positif de a et b si $ab \ne 0$, et 0 sinon.

Propriété.

Soit $(a, b) \in \mathbb{Z}^2$. Alors,

$$m = a \lor b \Leftrightarrow \left\{ \begin{array}{l} m \geq 0 \\ a|m \text{ et } b|m \\ \forall m' \in \mathbb{Z}, \ (a|m' \text{ et } b|m') \Rightarrow m|m' \end{array} \right.$$

Remarque.

- $\ \forall (a,b) \in \mathbb{Z}^2, \ a \lor b = |a| \lor |b|$
- $\forall a \in \mathbb{Z}, \ a \lor 0 = 0$

Théorème.

Etant donnés a et b des entiers non nuls,

$$(a \wedge b)(a \vee b) = |ab|$$

III. Nombres premiers

On se limite ici à \mathbb{N} .

1. Définitions et premières propriétés

Définition.

Un entier est dit premier lorsqu'il admet exactement deux diviseurs : 1 et lui-même.

Propriété.

Tout entier $n \ge 2$ admet au moins un diviseur premier.

Corollaire.

L'ensemble \mathbb{P} des entiers naturels premiers est infini.

Propriété.

Un nombre premier est premier avec tous les entiers qu'il ne divise pas. En particulier, si p est premier, alors $p \wedge k = 1$ pour tout $k \in \{1, ..., p-1\}$.

Théorème.

Si un nombre premier divise un produit fini d'entiers non nuls, alors il divise l'un d'eux.

2. Décomposition en produit de facteurs premiers

Théorème.

Tout entier $n \ge 2$ admet une unique décomposition en produit fini de nombres premiers (à l'ordre des facteurs près) de la forme :

$$n=p_1^{\alpha_1}p_2^{\alpha_2}...p_r^{\alpha_r}$$

où les p_k sont des nombres premiers deux à deux distincts et les α_k des enties naturels non nuls.

Remarque. Cette décomposition peut aussi s'écrire $n = \prod_{p \in \mathbb{P}} p^{\alpha_p}$ en attribuant l'exposant 0 aux nombres premiers qui ne sont pas dans la famille $(p_k)_{k \in \{1,\dots,r\}}$

4

Application aux diviseurs

Théorème.

Les diviseurs de $n=p_1^{\alpha_1}p_2^{\alpha_2}...p_r^{\alpha_r}$ sont les entiers :

$$d = p_1^{\delta_1} p_2^{\delta_2} ... p_r^{\delta_r}$$

avec $\forall k \in \{1, ..., r\}, 0 \le \delta_k \le \alpha_k$

Propriété.

Soit a et b des entiers supérieurs à $2:a=\prod_{p\in\mathbb{P}}p^{\alpha_p}$ et $b=\prod_{p\in\mathbb{P}}p^{\beta_p}.$ Alors,

$$a\wedge b=\prod_{p\in \mathbb{P}}p^{inf(\alpha_p,\beta_p)}\text{ et }a\vee b=\prod_{p\in \mathbb{P}}p^{sup(\alpha_p,\beta_p)}$$

Exemple. PGCD et PPCM de 360 et 21.

IV. Congruences

Définition

Etant donnés deux entiers relatifs x, y et un entier naturel n, on dit que x est congru à ymodulo n si $x - y \in n\mathbb{Z}$ ou encore s'il existe $k \in \mathbb{Z}$ tel que x = y + kn. On note alors $x \equiv y [n]$.

Remarque.

- $-x \equiv 0 [n] \Leftrightarrow n|x$
- $-x \equiv y[0] \Leftrightarrow x = y$
- $-x \equiv y[n] \Leftrightarrow x$ et y ont le même reste dans la division euclidienne par n
- Si r est le reste dans la division euclidienne de x par n, alors $x \equiv r[n]$

Propriété.

La relation de congruence est une relation d'équivalence.

Propriété.

Soit x, y, x', y' des entiers relatifs et n, p des entiers naturels.

Si $x \equiv x'[n]$ et si $y \equiv y'[n]$, alors

$$\begin{array}{cccc} x+y & \equiv & x'+y' & [n] \\ xy & \equiv & x'y' & [n] \\ x^p & \equiv & x'^p & [n] \end{array}$$

$$xy \equiv x'y' \qquad [n]$$

$$x^p \equiv x'^p$$

Définition.

Etant donnés un entier relatif x et un entier naturel n, l'ensemble des entiers relatifs congrus à x modulo n est appelé la classe d'équivalence de x modulo n et notée \bar{x} .

Remarque. $x \equiv y [n] \Leftrightarrow \bar{x} = \bar{y}$