

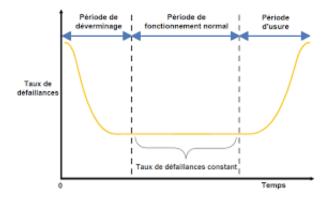
R3.08 - Probabilités TD 3 - Variables aléatoires infinies

A. Ridard

Exercice 1 (Dimensionner un tableau).

On doit dimensionner un tableau qui est une ressource pour un ensemble de processus.

Un processus qui s'exécute a besoin d'une entrée dans le tableau.


Si aucune entrée n'est disponible, alors il est mis en attente dans une file.

En moyenne, 5 processus s'exécutent en même temps.

En supposant que le nombre X de processus à traiter en même temps suive une loi de Poisson, comment dimensionner le tableau pour que la probabilité qu'un processus (au moins) soit mis en attente ne dépasse pas 10%.

Exercice 2 (Taux de défaillance).

Le taux de défaillance d'un matériel informatique évolue dans le temps de la manière suivante :

On va négliger les effets de bord c'est à dire ne considérer que la période de fonctionnement normal. La v.a. T égale à l'instant de première défaillance suit alors une loi exponentielle (pourquoi?).

- 1. On considère un matériel informatique dont la fiche technique mentionne une MTBF [1] égale à 30 000 heures.
 - (a) Déterminer le paramètre λ de la loi exponentielle suivie par T.
 - (b) Déterminer la probabilité que l'instant de première défaillance intervienne après 15 000 heures.
 - (c) Déterminer la probabilité que l'instant de première défaillance intervienne après 30 000 heures.
 - (d) Déterminer la probabilité que le matériel fonctionne encore après 30 000 heures sachant qu'il a déjà fonctionné 15 000 heures.
- 2. On considère maintenant un routeur R et un ordinateur O indépendants et placés en série. Le routeur R a une MTBF égale à 30 000 heures et l'ordinateur O une MTBF égale à 15 000 heures.
 - (a) Déterminer la probabilité que l'instant de première défaillance intervienne après 10 000 heures.
 - (b) Remplir le tableau suivant :

Probabilité de fonctionnement	R	0	Système (R, O) en série
après 10 000 heures			
après 30 000 heures			

- 3. Une entreprise de gestion de bases de données utilise plusieurs serveurs, alimentés par 2 alimentations A_1 , A_2 indépendantes et placées en parallèle. Chaque alimentation a une MTBF égale à 100 000 heures.
 - (a) Déterminer la probabilité que le système fonctionne encore après 1 an.
 - (b) Déterminer la probabilité que le système tombe en panne avant *n* années.
 - (c) Au bout de combien d'année faut-il changer le système pour que le risque de panne n'excède pas 10%?

Exercice 3 (Dissipation thermique).

Nous pouvons considérer qu'un transistor a une dissipation thermique de 1.5×10^{-6} °C mais sa valeur réelle n'est pas exactement celle-là. En fait, la dissipation thermique d'un transistor peut être modélisée par une loi normale de moyenne 1.5×10^{-6} et dont l'écart-type dépend de la qualité du transistor.

- 1. On considère ici une certaine qualité de transistor, on note X la dissipation thermique et on suppose l'écart-type égal à 10^{-6} .
 - (a) Déterminer la loi de X.
 - (b) Déterminer la probabilité que la dissipation thermique d'un transistor soit inférieure à $2,67 \times 10^{-6}$ °C.
 - (c) Déterminer la probabilité que la dissipation thermique d'un transistor soit supérieure à 2×10^{-6} °C.
 - (d) Déterminer la probabilité que la dissipation thermique d'un transistor soit inférieure à 0.24×10^{-6} °C.
 - (e) Déterminer la probabilité que la dissipation thermique d'un transistor soit supérieure à 0.48×10^{-6} °C.
 - (f) Déterminer la probabilité que la dissipation thermique d'un transistor soit comprise entre 0.5×10^{-6} °C et 2×10^{-6} °C.
- 2. Les processeurs Pentium 4 (année 2000) comptaient 42 millions de transistors supposés indépendants et de même qualité. On note S la dissipation thermique d'un tel processeur.
 - (a) Déterminer [2] la loi de S.
 - (b) En considérant la même qualité de transistor que précédemment c'est à dire un écart-type égal à 10^{-6} , déterminer la probabilité que la dissipation thermique d'un processeur Pentium 4 soit supérieure à 80 °*C*.
 - (c) Recalculer cette probabilité avec des transistors de moindre qualité à savoir un écart-type égal à 10^{-3} .
 - (d) En conservant cette dernière qualité de transistor, déterminer un intervalle centré sur E(S) et contenant S avec une probabilité égale à 95%.
 - (e) Comment peut-on exploiter ce dernier résultat pour prévoir un ventilateur adapté?

Table de la loi de Poisson

			1
	0,4493	0,4066	0,3679
1 0,0905 0,1637 0,2222 0,2681 0,3033 0,3293 0,3476 0	0,3595	0,3659	0,3679
	0,1438	0,1647	0,1839
	0,0383	0,0494	0,0613
	0,0077	0,0111	0,0153
	0,0012	0,0020	0,0031
	0,0002	0,0003	0,0005
	0,0000,0	0,0000	0,0001
8	.57	12 (Se)	0,0000
λ 1,1 1,2 1,3 1,4 1,5 1,6 1,7	1,8	1,9	2
r 0 0,3329 0,3012 0,2725 0,2466 0,2231 0,2019 0,1827 0	0,1653	0,1496	0,1353
	0,2975	0,2842	0,2707
	0,2678	0,2700	0,2707
	0,1607	0,1710	0,1804
	0,0723	0,0812	0,0902
	0,0260	0,0309	0,0361
	0,0078	0,0098	0,0120
	0,0020	0,0027	0,0034
	0,0005	0,0006	0,0009
	0,0001	0,0001	0,0002
	0,0000	0,0000	0,0000
11		0,0000	0,0000
λ 2,1 2,2 2,3 2,4 2,5 2,6 2,7	2,8	2,9	3
	7	2	ok i i i i i i i i i i i i i i i i i i i
	0,0608	0,0550	0,0498
	0,1703	0,1596	0,1494
	0,2384	0,2314	0,2240
	0,2225	0,2237	0,2240
	0,1557	0,1622	0,1680
	0,0872	0,0940	0,1008
	0,0407	0,0455	0,0504
	0,0163	0,0188	0,0216
	0,0057	0,0068	0,0081
	0,0018	0,0022	0,0027
	0,0005	0,0006	0,0008
	0,0001	0,0002	0,0002
	0,0000,0	0,0000	0,0001
13	10000	0,0000	0,0000
λ 2,5 3 4 4,5 5 5,5 6	7	8	9
	0,0009	0,0003	0,0001
	0,0064	0,0027	0,0011
	0,0223	0,0107	0,0050
	0,0521	0,0286	0,0150
	0,0912	0,0573	0,0337
	0,1277	0,0916	0,0607
	0,1490	0,1221	0,0911
	0,1490	0,1396	0,1171
	0,1304	0,1396	0,1318
9 0,0009 0,0027 0,0132 0,0232 0,0363 0,0519 0,0688 0	0,1014	0,1241	0,1318
10 0,0002 0,0008 0,0053 0,0104 0,0181 0,0285 0,0413 0	0,0710	0,0993	0,1186
	0,0452	0,0722	0,0970
	0,0263	0,0481	0,0728
13 0,0000 0,0002 0,0006 0,0013 0,0028 0,0052 0	0,0142	0,0296	0,0504